ZeroPM Scientific Publications
A list of scientific publications that ZeroPM has contributed to can be found below. Last updated March 13, 2025. An updated list can always be found at Zenodo.
Aggarwal, R. (2024). Comparative life cycle assessment of reusable and single use take-away lunch boxes used in student restaurants. Cleaner Environmental Systems, 14, 100223. https://www.sciencedirect.com/science/article/pii/S2666789424000618
Aggarwal, R. (2025). Freshwater ecotoxicity characterization factors for PFASs. Integrated Environmental Assessment and Management, 21(1), 208–219. https://doi.org/10.1186/s12302-022-00631-1
Aggarwal, R., & Peters, G. (2024). Freshwater ecotoxicity characterization factors for PMT/vPvM substances. Chemosphere, 360, 142391. https://www.sciencedirect.com/science/article/pii/S0045653524012840
Arp, H. P. H., Aurich, D., Schymanski, E. L., Sims, K., & Hale, S. E. (2023). Avoiding the Next Silent Spring: Our Chemical Past, Present, and Future. Environmental Science and Technology, 57(16), 6355–6359. https://doi.org/10.1021/acs.est.3c01735
Arp, H. P. H., Gredelj, A., Glüge, J., Scheringer, M., & Cousins, I. T. (2024). The Global Threat from the Irreversible Accumulation of Trifluoroacetic Acid (TFA). Environmental Science & Technology, 58(45), 19925–19935. https://doi.org/10.1021/acs.est.4c06189
Arp, H. P. H., & Hale, S. E. (2022). Assessing the persistence and mobility of organic substances to protect freshwater resources. ACS Environmental Au, 2(6), 482–509. https://pubs.acs.org/doi/full/10.1021/acsenvironau.2c00024
Arvidsson, R., Peters, G., Hansen, S. F., & Baun, A. (2022). Prospective environmental risk screening of seven advanced materials based on production volumes and aquatic ecotoxicity. NanoImpact, 25. https://doi.org/10.1016/j.impact.2022.100393
Bǎlan, S. A., Andrews, D. Q., Blum, A., Diamond, M. L., Fernández, S. R., Harriman, E., Lindstrom, A. B., Reade, A., Richter, L., Sutton, R., Wang, Z., & Kwiatkowski, C. F. (2023). Optimizing Chemicals Management in the United States and Canada through the Essential-Use Approach. Environmental Science and Technology (Vol. 57, Issue 4, pp. 1568–1575). American Chemical Society. https://doi.org/10.1021/acs.est.2c05932
Barnabas, S. J., Böhme, T., Boyer, S. K., Irmer, M., Ruttkies, C., Wetherbee, I., Kondić, T., Schymanski, E. L., & Weber, L. (2022). Extraction of chemical structures from literature and patent documents using open access chemistry toolkits: a case study with PFAS. Digital Discovery, 1(4), 490–501. https://pubs.rsc.org/en/content/articlehtml/2022/dd/d2dd00019a
Blumenthal, J., Diamond, M. L., Liu, G., & Wang, Z. (2022). Introducing “Embedded Toxicity”: A Necessary Metric for the Sound Management of Building Materials. Environmental Science and Technology (Vol. 56, Issue 14, pp. 9838–9841). American Chemical Society. https://doi.org/10.1021/acs.est.2c03128
Carney Almroth, B., Cornell, S. E., Diamond, M. L., de Wit, C. A., Fantke, P., & Wang, Z. (2022). Understanding and addressing the planetary crisis of chemicals and plastics. One Earth (Vol. 5, Issue 10, pp. 1070–1074). Cell Press. https://doi.org/10.1016/j.oneear.2022.09.012
Charbonnet, J. A., McDonough, C. A., Xiao, F., Schwichtenberg, T., Cao, D., Kaserzon, S., Thomas, K. V., Dewapriya, P., Place, B. J., Schymanski, E. L., Field, J. A., Helbling, D. E., & Higgins, C. P. (2022). Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environmental Science and Technology Letters (Vol. 9, Issue 6, pp. 473–481). American Chemical Society. https://doi.org/10.1021/acs.estlett.2c00206
Cousins, I. T., Johansson, J. H., Salter, M. E., Sha, B., & Scheringer, M. (2022). Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS). Environmental Science & Technology, 56(16), 11172–11179. https://doi.org/10.1021/acs.est.2c02765
Deligiannis, M., Gkalipidou, E., Gatidou, G., Kostakis, M. G., Triantafyllos Gerokonstantis, D., Arvaniti, O. S., Thomaidis, N. S., Vyrides, I., Hale, S. E., Peter Arp, H., Fountoulakis, M. S., & Stasinakis, A. S. (2024). Study on the fate of per- and polyfluoroalkyl substances during thermophilic anaerobic digestion of sewage sludge and the role of granular activated carbon addition. Bioresource Technology, 406. https://doi.org/10.1016/j.biortech.2024.131013
Göckener, B., Lange, F. T., Lesmeister, L., Gökçe, E., Dahme, H. U., Bandow, N., & Biegel-Engler, A. (2022). Digging deep—implementation, standardisation and interpretation of a total oxidisable precursor (TOP) assay within the regulatory context of per- and polyfluoroalkyl substances (PFASs) in soil. Environmental Sciences Europe, 34(1), 1–9. https://doi.org/10.1186/s12302-022-00631-1
Groh, K. J., Arp, H. P. H., MacLeod, M., & Wang, Z. (2022). Assessing and managing environmental hazards of polymers: historical development, science advances and policy options. Environmental Science: Processes and Impacts, 25. https://doi.org/10.1039/d2em00386d
Hale, S. E., & Arp, H. P. H. (2022). Tackling persistent, mobile and toxic substances in the aquatic environment through prevention, prioritization and removal strategies. Vann. https://vannforeningen.no/wp-content/uploads/2023/04/Hale.pdf
Hale, S. E., Kalantzi, O. I., & Arp, H. P. H. (2022). Introducing the EU project ZeroPM: zero pollution of persistent, mobile substances. Environmental Sciences Europe (Vol. 34, Issue 1). Springer. https://doi.org/10.1186/s12302-022-00681-5
Han, M., Liang, J., Jin, B., Wang, Z., Wu, W., & Arp, H. P. H. (2024). Machine learning coupled with causal inference to identify COVID-19 related chemicals that pose a high concern to drinking water. Iscience, 27(2). https://www.cell.com/iscience/fulltext/S2589-0042(24)00233-5?uuid=uuid%3A743e6dd2-c764-42c6-a53c-3e4f8098a746
Holmquist, H., Roos, S., Schellenberger, S., Jönsson, C., & Peters, G. (2021). What difference can drop-in substitution actually make? A life cycle assessment of alternative water repellent chemicals. Journal of Cleaner Production, 329, 129661. https://www.sciencedirect.com/science/article/pii/S0959652621038385
Huang, C., Jin, B., Han, M., Zhang, G., & Arp, H. P. H. (2023). Identifying persistent, mobile and toxic (PMT) organic compounds detected in shale gas wastewater. Science of the Total Environment, 858. https://doi.org/10.1016/j.scitotenv.2022.159821
Hubert, M., Arp, H. P. H., Hansen, M. C., Castro, G., Meyn, T., Asimakopoulos, A. G., & Hale, S. E. (2023). Influence of grain size, organic carbon and organic matter residue content on the sorption of per-and polyfluoroalkyl substances in aqueous film forming foam contaminated soils-Implications for remediation using soil washing. Science of The Total Environment, 875, 162668. https://www.sciencedirect.com/science/article/pii/S0048969723012846
Hubert, M., Meyn, T., Hansen, M. C., Hale, S. E., & Arp, H. P. H. (2024). Per-and polyfluoroalkyl substance (PFAS) removal from soil washing water by coagulation and flocculation. Water Research, 249, 120888. https://www.sciencedirect.com/science/article/pii/S0043135423013283
Jurkiewicz, D., Sosnowska, A., Buławska, N., Stępnik, M., Behnisch, P., Besselink, H., & Puzyn, T. (2022). How the structure of per-and polyfluoroalkyl substances (Pfas) influences their binding potency to the peroxisome proliferator-activated and thyroid hormone receptors–an in silico screening study. Available at SSRN 4173912. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4173912
Klotz, M., Schmidt, S., Wiesinger, H., Laner, D., Wang, Z., & Hellweg, S. (2024). Increasing the recycling of PVC flooring requires phthalate removal for ensuring consumers’ safety: A cross-checked substance flow analysis of plasticizers for Switzerland. Environmental Science & Technology, 58(42), 18686–18700. https://pubs.acs.org/doi/abs/10.1021/acs.est.4c04164
Kowalska, D., Sosnowska, A., Bulawska, N., Stępnik, M., Besselink, H., Behnisch, P., & Puzyn, T. (2023). How the structure of per-and polyfluoroalkyl substances (PFAS) influences their binding potency to the peroxisome proliferator-activated and thyroid hormone receptors—An in silico screening study. Molecules, 28(2), 479. https://www.mdpi.com/1420-3049/28/2/479
Langberg, H. A., Arp, H. P. H., Castro, G., Asimakopoulos, A. G., & Knutsen, H. (2024). Recycling of paper, cardboard and its PFAS in Norway. Journal of Hazardous Materials Letters, 5. https://doi.org/10.1016/j.hazl.2023.100096
Langberg, H. A., Breedveld, G. D., Kallenborn, R., Ali, A. M., Choyke, S., McDonough, C. A., Higgins, C. P., Jenssen, B. M., Jartun, M., Allan, I., Hamers, T., & Hale, S. E. (2024). Human exposure to per- and polyfluoroalkyl substances (PFAS) via the consumption of fish leads to exceedance of safety thresholds. Environment International, 190. https://doi.org/10.1016/j.envint.2024.108844
Lennquist, A., Kleimark, J., Arp, H. P. H., & Hale, S. E. (2024). Facilitating the market transition away from persistent and mobile substances: a report on tools developed by ChemSec in the ZeroPM project: SIN list, Marketplace and the PFAS guide. Environmental Sciences Europe (Vol. 36, Issue 1). Springer. https://doi.org/10.1186/s12302-023-00829-x
Mohr, T., Schliebner, I., Neumann, M., Oules, L., Arp, H. P. H., & Hale, S. E. (2024). Progress in European chemicals policy to support the protection of the environment and human health from persistent, mobile and toxic and very persistent and very mobile substances. Environmental Sciences Europe (Vol. 36, Issue 1). Springer. https://doi.org/10.1186/s12302-024-00932-7
Mueller, L. K., Ågerstrand, M., Backhaus, T., Diamond, M., Erdelen, W. R., Evers, D., Groh, K. J., Scheringer, M., Sigmund, G., Wang, Z., & Schäffer, A. (2022). Policy options to account for multiple chemical pollutants threatening biodiversity. Environmental Science: Advances (Vol. 2, Issue 2, pp. 151–161). Royal Society of Chemistry. https://doi.org/10.1039/d2va00257d
Mutzner, L., Zhang, K., Luthy, R. G., Arp, H. P. H., & Spahr, S. (2023). Urban stormwater capture for water supply: look out for persistent, mobile and toxic substances. Environmental Science: Water Research and Technology (Vol. 9, Issue 12, pp. 3094–3102). Royal Society of Chemistry. https://doi.org/10.1039/d3ew00160a
Palm, E. H., Chirsir, P., Krier, J., Thiessen, P. A., Zhang, J., Bolton, E. E., & Schymanski, E. L. (2023). ShinyTPs: Curating Transformation Products from Text Mining Results. Environmental Science and Technology Letters, 10(10), 865–871. https://doi.org/10.1021/acs.estlett.3c00537
Riegel, M., Haist-Gulde, B., & Sacher, F. (2023). Sorptive removal of short-chain perfluoroalkyl substances (PFAS) during drinking water treatment using activated carbon and anion exchanger. Environmental Sciences Europe, 35(1). https://doi.org/10.1186/s12302-023-00716-5
Rillig, M. C., Kim, S. W., Schäffer, A., Sigmund, G., Groh, K. J., & Wang, Z. (2022). About “controls” in Pollution-Ecology Experiments in the Anthropocene. Environmental Science and Technology (Vol. 56, Issue 17, pp. 11928–11930). American Chemical Society. https://doi.org/10.1021/acs.est.2c05460
Roy, M. A., Cousins, I., Harriman, E., Scheringer, M., Tickner, J. A., & Wang, Z. (2022). Combined Application of the Essential-Use and Functional Substitution Concepts: Accelerating Safer Alternatives. Environmental Science and Technology (Vol. 56, Issue 14, pp. 9842–9846). American Chemical Society. https://doi.org/10.1021/acs.est.2c03819
Savvidou, E. K., Rensmo, A., Benskin, J. P., Schellenberger, S., Hu, X., Weil, M., & Cousins, I. T. (2024). PFAS-Free Energy Storage: Investigating Alternatives for Lithium-Ion Batteries. Environmental Science & Technology, 58(50), 21908–21917. https://pubs.acs.org/doi/abs/10.1021/acs.est.4c06083
Schäffer, A., Fenner, K., Wang, Z., & Scheringer, M. (2022). To be or not to be degraded: in defense of persistence assessment of chemicals. Environmental Science: Processes and Impacts, 24(8), 1104–1109. https://doi.org/10.1039/d2em00213b
Scheringer, M., Johansson, J. H., Salter, M. E., Sha, B., & Cousins, I. T. (2022). Stories of Global Chemical Pollution: Will We Ever Understand Environmental Persistence? Environmental Science and Technology (Vol. 56, Issue 24, pp. 17498–17501). American Chemical Society. https://doi.org/10.1021/acs.est.2c06611
Schymanski, E. L., Zhang, J., Thiessen, P. A., Chirsir, P., Kondic, T., & Bolton, E. E. (2023). Per-and polyfluoroalkyl substances (PFAS) in PubChem: 7 million and growing. Environmental Science & Technology, 57(44), 16918–16928. https://pubs.acs.org/doi/abs/10.1021/acs.est.3c04855
Shi, X., Langberg, H. A., Sobek, A., & Benskin, J. P. (2025). Exploiting Molecular Ions for Screening Hydrophobic Contaminants in Sediments Using Gas Chromatography-Atmospheric Pressure Chemical Ionization-Ion Mobility-Mass Spectrometry. Environmental Science and Technology. https://doi.org/10.1021/acs.est.4c13059
Sigmund, G., Ågerstrand, M., Antonelli, A., Backhaus, T., Brodin, T., Diamond, M. L., Erdelen, W. R., Evers, D. C., Hofmann, T., & Hueffer, T. (2023). Addressing chemical pollution in biodiversity research. Global Change Biology, 29(12), 3240–3255. https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.16689
Smith, S. J., Lauria, M., Higgins, C. P., Pennell, K. D., Blotevogel, J., & Arp, H. P. H. (2024). The Need to Include a Fluorine Mass Balance in the Development of Effective Technologies for PFAS Destruction. In Environmental Science and Technology (Vol. 58, Issue 6, pp. 2587–2590). American Chemical Society. https://doi.org/10.1021/acs.est.3c10617
Tian, R., Posselt, M., Miaz, L. T., Fenner, K., & McLachlan, M. S. (2024). Influence of Season on Biodegradation Rates in Rivers. Environmental Science & Technology, 58(16), 7144–7153. https://pubs.acs.org/doi/abs/10.1021/acs.est.3c10541
van Dijk, J., Figuière, R., Dekker, S. C., van Wezel, A. P., & Cousins, I. T. (2023). Managing PMT/vPvM substances in consumer products through the concepts of essential-use and functional substitution: a case-study for cosmetics. Environmental Science: Processes & Impacts, 25(6), 1067–1081. https://pubs.rsc.org/en/content/articlehtml/2023/em/d3em00025g
Vestergren, R., Appelblom, A., Bălan, S. A., Brandsma, S. H., Bruton, T. A., Cousins, I. T., Gauthier, J. R., Heggelund, A., Ivarsson, J., Kärrman, A., Melymuk, L., Olisah, C., Rosen, A., Savvidou, E. K., Schellenberger, S., Skedung, L., Talasniemi, P., Wickman, T., Zweigle, J., … Benskin, J. P. (2024). A Systematic Workflow for Compliance Testing of Emerging International Classwide Restrictions on PFAS. Environmental Science and Technology. American Chemical Society. https://doi.org/10.1021/acs.est.4c06570
Wang, M., Carlini, G., & Wang, Z. (2023). Major International Negotiations on Chemicals and Waste for Researchers from All Disciplines to Watch for in 2023. Environmental Science and Technology Letters (Vol. 10, Issue 5, pp. 392–394). American Chemical Society. https://doi.org/10.1021/acs.estlett.3c00219
Wang, M., Green, C., & Wang, Z. (2022). Six Recommendations for Early Career Professionals to Join Work at the Science-Policy Interface: Collective Experience from Academic, Governmental, and NGO Scientists. Environmental Science and Technology (Vol. 56, Issue 24, pp. 17506–17509). American Chemical Society. https://doi.org/10.1021/acs.est.2c08290
Wang, Z., & Praetorius, A. (2022). Integrating a Chemicals Perspective into the Global Plastic Treaty. Environmental Science and Technology Letters (Vol. 9, Issue 12, pp. 1000–1006). American Chemical Society. https://doi.org/10.1021/acs.estlett.2c00763
Wiesinger, H., Shalin, A., Huang, X., Siegrist, A., Plinke, N., Hellweg, S., & Wang, Z. (2024). LitChemPlast: An Open Database of Chemicals Measured in Plastics. Environmental Science & Technology Letters, 11(11), 1147–1160. https://pubs.acs.org/doi/abs/10.1021/acs.estlett.4c00355
Zahn, D., Arp, H. P. H., Fenner, K., Georgi, A., Hafner, J., Hale, S. E., Hollender, J., Letzel, T., Schymanski, E. L., Sigmund, G., & Reemtsma, T. (2024). Should Transformation Products Change the Way We Manage Chemicals? Environmental Science and Technology (Vol. 58, Issue 18, pp. 7710–7718). American Chemical Society. https://doi.org/10.1021/acs.est.4c00125
Zhang, S., Chen, J., Wang, Z., Chen, C., Chen, A., Jing, Q., & Liu, J. (2023). Dynamic Source Distribution and Emission Inventory of a Persistent, Mobile, and Toxic (PMT) Substance, Melamine, in China. Environmental Science & Technology, 57(39), 14694–14706. https://pubs.acs.org/doi/abs/10.1021/acs.est.3c02945
Zou, H., Wang, T., Wang, Z.-L., & Wang, Z. (2023). Continuing large-scale global trade and illegal trade of highly hazardous chemicals. Nature Sustainability, 6(11), 1394–1405. https://www.nature.com/articles/s41893-023-01158-w
Cheminformatics
The ZeroPM database
The ZeroPM database, the Global Chemical Inventory can be found here.


ZeroPM on Zenodo
Early data releases, presentations and other open access resources are published live on ZeroPM’s Zenodo community!
ZeroPM’s GitHub
Help crack the ZeroPM code! The official GitHub repository for ZeroPM can be found here.


ZeroPM on PubChem
The substances that ZeroPM researchers have prioritized for deeper research as part of prevention, prioritization and removal investigations are listed on the ZeroPM’s PubChem page. ZeroPM will add information on these substances via PubChem as part of ambition of Open Science and FAIR data.
External Databases and tools
Useful resources on PFAS, PMT/vPvM substance, QSARs and chemical property databases that will be utilized, and in many cases expanded by, the ZeroPM research team can be found here.

.

Transformation Products with ShinyTPs
ShinyTPs is a Shiny interface to curate transformation products from text mining results from HSDB & PubChem. You can find ShinyTPs on GitLab or read all about it in Palm et al. (2023) Environ. Sci. Technol. Lett. DOI: 10.1021/acs.estlett.3c00537.